À table! ... chez Pythagore.

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

On peut découvrir de très nombreuses propriétés dans une table de multiplication.

Les Malices du *Kangourou des collèges 2026* en dévoileront des dizaines.

En voici deux, en avant-première :

- . Les sommes des résultats dont les cases forment une croix grecque (+) ou une croix de saint André (x) de même centre et de même dimension sont égales.
- . Les cubes des entiers se retrouvent égaux à la somme des résultats dont les cases forment certaines équerres.

Les croix + et x

Lorsqu'on superpose un (x,y) et un (x,y) de même taille et de même centre, n'importe où sur la table de Pythagore, la somme des termes du (x,y) est égale à la somme des termes du (x,y).

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

Pour démontrer ce résultat, Il suffit de montrer que la somme des 4 cases aux extrémités des croix + et × sont égales.

La case du centre étant la case a×b et la longueur des branches valant p :

$$a(b-p) + a(b+p) + (a-p)b + (a+p)b = 4ab.$$

$$(a-p)(b-p) + (a+p)(b+p) + (a+p)(b-p) + (a-p)(b+p) = 4ab.$$

Sur l'exemple, on a choisi a=4, b=6, et p=3 pour la longueur des branches.

Et les sommes aux extrémités sont :

$$12 + 36 + 6 + 42 = 96$$
 et $3 + 63 + 9 + 21 = 96$.

Les cubes des nombres

Les nombres sur la diagonale d'une table de multiplication sont la suite des nombres carrés.

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

Mais on peut aussi retrouver les nombres cubes des entiers dans la table de multiplication!
Il suffit d'additionner les nombres de chaque équerre en couleur sur la table ci-contre.

Vérification: $1 = 1 \times 1 \times 1$ $2 \times 2 + 4 = 8 = 2 \times 2 \times 2$ $2 \times (3+6) + 9 = 27 = 3 \times 3 \times 3$ $2 \times (4+8+12) + 16 = 64 = 4 \times 4 \times 4$ $2 \times (5+10+15+20) + 25 = 125 = 5 \times 5 \times 5$ $2 \times (6+12+18+24+30) + 36 = 216 = 6 \times 6 \times 6$ $2 \times (7+14+21+28+35+42) + 49 = 343 = 7 \times 7 \times 7$ $2 \times (8+16+24+32+40+48+56) + 64 = 512 = 8 \times 8 \times 8$ $2 \times (9+18+27+36+45+54+63+72) + 81 = 729 = 9 \times 9 \times 9$

Mais il y a une autre nouvelle et étonnante manière de retrouver les nombres cubes dans une table de multiplication :

	2	3	4	5	6	7	8	9
2		6	8	10	12	14	16	18
3/	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
15	10	15	20	25	30	35	40	45
6	1/2	18	24	30	36	42	48	54
1	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
8	18	27	36	45	54	63	72	81

En effet, en ajoutant les nombres écrits sur

© 2025, Kangourou des mathématiques 12 rue de l'épée de bois 75005 Paris www.mathkang.org